
SYNCHRON 2016

TOWARDS BETTER EMBEDDED SOFTWARE

JENS BRANDT, FRIEDRICH GRETZ, FRANZ-JOSEF GROSCH

Brandt / Gretz / Grosch | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

2

Agenda

1. Background

2. State-of-the-art

3. Conceptual deficiencies

4. The link to synchronous languages

5. Requirements of embedded systems

6. Outlook: A new language?

I. Background

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3

Many Bosch products are driven by embedded software

Our domain

We need to advance:
 Analysis
 Architecture
 Implementation
 Verification

 Little progress in:
 methodology and tools

Rapid increase in:
 number of products,
 their functionality,
 complexity

II. State-of-the-art

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

4

 Assembler  C  Simulink, ASCET

Programming Frontend

Runnables: void-void C function

 no inputs, no outputs, operates on global

variables

Runnables are ordered in sequence to form a task

 Sequence

 Tasks may be ordered by priority

 Tasks ≈ clock rates (e.g. 1ms, 5ms, 10ms, …)

II. State-of-the-art

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

5

Deployment Backend

f()

f() g() h()T
k() l() m() n() o()T10

f() g() h()T20

a() b() c() d()T40

r() s() t()T1

x() y()T5

 Stack of active tasks
 A running task may be preempted by tasks with

higher priority

For more details see: “Real world automotive benchmark for free” by Simon Kramer, Dirk Ziegenbein and Arne Hamann, WATERS 2015

III. Conceptual deficiencies

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

6

Handling concurrency:

 Who is writing what variable and when?

 Ordering of runnables and tasks determined by a separate task list in XML

‒ Implicitly introduces prev and current accesses without ever being documented

 State machine behaviour is either implicit or formulated in a separate monolithic model

Nondeterminism:

 Above ordering has no formal criteria

 Communication between concurrent threads is non-deterministic

III. Conceptual deficiencies

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

7

 Adding new software is hard

Most effort is spent in:

 Reverse engineering to find out who is writing what variable and when

 Composition of software components, requiring lots of meta data about side effects, timing constraints, …

 Lack of software qualities such as:

 Determinism & testability

 Readability

 Flexibility (refactoring!)

 Modularity

Effects of deficiencies

IV. The link to synchronous languages

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

8

We believe we can benefit greatly from the synchronous programming approach:

 Behaviour over time

 Preemptions and mode switches

 Structured programming of state machines

 Causality of concurrent functions

We hope your research may benefit from industrial challenge

 So where is the challenge?

Why we are here

V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

9

Clear focus
 Software ………………………………………… Not hardware
 Embedded ………………………………………… Not “IT”-level software
Reactive ………………………………………… Trigger-response execution
Real-time ………………………………………… Time is functional, not a performance

measure
Resource-constrained hardware …………… No heap allocation, garbage collection
 Scale to software with millions lines of code …. Not “wrist watch”

V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

10

Control intensive systems
 Intertwined functionality
Computations and switching behaviour
 Preemptions
Causality ………………………………… Relaxed notion of causality is sufficient for software

= concurrent processes + shared variables + barriers!

Synchronous programming = Unique writer and
write before read between each pair of barriers.

Domain orientation

V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

11

 Integration of legacy code
 Integration in legacy code
 Support separate compilation
 Address deployment on multi-core platforms
 Program across threads, cores maintaining

guarantees such as causality

Compatible with the past and future

V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

12

 Efficient code generation ……………………….. No definitive consensus yet?
 Safe code generation ….……………………. Runtime errors shall be impossible on a final

system
 Integrate synchronous “execution shell” with existing

real-time OS environments
 Low level mapping to cores and tasks

Deployment

V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

13

Developer orientation
Readable programs ..…………….. Programs are mostly read,

sometimes adapted and
almost never written from scratch

Crystal clear semantics .……………… Make it hard to write nonsense,
make it obvious what any piece of code does

 Express stateflow in control flow
 Provide structured data types .………........... These cannot be disintegrated into primitives

(arrays, structs, enums)
 Enable structuring, information hiding ………........... Structures cannot be just macros that are

instantiated and inlined
 Provide a safe and modern type system ……. Physical units, sum types

V. Requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

14

Testing and verification
 Easy testing ……………… Write tests in the same language and

compose concurrently with production code
 Integration with existing simulation ……………… E.g.: Simulink, Functional Mockup Interface

frameworks
Generate verification conditions for ……………… Lots of assertions (no 0-division, no out-of-

abstract interpreters bounds access, …) are never specified by the
programmer but are trivial to generate and
significantly help to find bugs

V. Not requirements

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

15

What we do not need
 Hardware related issues
 Single value per tick
 Reordering of commands
 Fine grained causality based on logical constructiveness or dynamic analyses
 Full range of preemption expressions

 And hence no
 Schizophrenia
 Fix point computations
 Intricate surface/depth compilation

By focusing we gain a few degrees of freedom

VI. Outlook

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

16

No off-the-shelf solution available which meets above requirements
 Theoretically most requirements are straight forward
 Some however are not
 True parallelism
 Deployment
 OO, references vs. causality

We have a vision that all requirements together lead to a new language with a new compiler and IDE
that support (most of) the above

 And we believe this will significantly improve the implementation methodology of embedded systems
 And there is the first practical evidence that a paradigm shift may be of interest to real-life developers

Do we need something new?

	Synchron 2016
	Agenda
	Our domain
	Programming Frontend
	Deployment Backend
	Slide Number 6
	Effects of deficiencies�
	Why we are here
	Clear focus
	Domain orientation
	Compatible with the past and future
	Deployment
	Developer orientation
	Testing and verification
	By focusing we gain a few degrees of freedom
	Do we need something new? �

