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Many Bosch products are driven by embedded software

Our domain

We need to advance:
 Analysis
 Architecture
 Implementation
 Verification

 Little progress in:
 methodology and tools

Rapid increase in:
 number of products,
 their functionality,
 complexity 
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 Assembler  C  Simulink, ASCET

Programming Frontend



Runnables: void-void C function

 no inputs, no outputs, operates on global 

variables

Runnables are ordered in sequence to form a task

 Sequence 

 Tasks may be ordered by priority

 Tasks ≈ clock rates (e.g. 1ms, 5ms, 10ms, …)

II. State-of-the-art
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Deployment Backend

f()

f() g() h()T
k() l() m() n() o()T10

f() g() h()T20

a() b() c() d()T40

r() s() t()T1

x() y()T5

 Stack of active tasks 
 A running task may be preempted by tasks with 

higher priority

For more details see: “Real world automotive benchmark for free”  by Simon Kramer, Dirk Ziegenbein and Arne Hamann, WATERS 2015
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Handling concurrency:

 Who is writing what variable and when?

 Ordering of runnables and tasks determined by a separate task list in XML

‒ Implicitly introduces prev and current accesses without ever being documented

 State machine behaviour is either implicit or formulated in a separate monolithic model

Nondeterminism:

 Above ordering has no formal criteria

 Communication between concurrent threads is non-deterministic
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 Adding new software is hard

Most effort is spent in:

 Reverse engineering to find out who is writing what variable and when

 Composition of software components, requiring lots of meta data about side effects, timing constraints, …

 Lack of software qualities such as:

 Determinism & testability

 Readability

 Flexibility (refactoring!)

 Modularity

Effects of deficiencies



IV. The link to synchronous languages

CR/AEA1 | 06.12.2016
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

8

We believe we can benefit greatly from the synchronous programming approach:

 Behaviour over time

 Preemptions and mode switches

 Structured programming of state machines

 Causality of concurrent functions

We hope your research may benefit from industrial challenge

 So where is the challenge?

Why we are here



V. Requirements
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Clear focus
 Software ………………………………………… Not hardware
 Embedded ………………………………………… Not “IT”-level software
Reactive ………………………………………… Trigger-response execution
Real-time ………………………………………… Time is functional, not a performance 

measure
Resource-constrained hardware …………… No heap allocation, garbage collection
 Scale to software with millions lines of code …. Not “wrist watch”
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Control intensive systems
 Intertwined functionality
Computations and switching behaviour
 Preemptions
Causality ………………………………… Relaxed notion of causality is sufficient for software 

= concurrent processes + shared variables + barriers!

Synchronous programming = Unique writer and 
write before read between each pair of barriers.

Domain orientation
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 Integration of legacy code
 Integration in legacy code
 Support separate compilation
 Address deployment on multi-core platforms
 Program across threads, cores maintaining 

guarantees such as causality

Compatible with the past and future
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 Efficient code generation ……………………….. No definitive consensus yet?
 Safe code generation ….……………………. Runtime errors shall be impossible on a final 

system
 Integrate synchronous “execution shell” with existing 

real-time OS environments
 Low level mapping to cores and tasks

Deployment



V. Requirements
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Developer orientation
Readable programs ..…………….. Programs are mostly read, 

sometimes adapted and 
almost never written from scratch

Crystal clear semantics .……………… Make it hard to write nonsense, 
make it obvious what any piece of code does

 Express stateflow in control flow
 Provide structured data types .………........... These cannot be disintegrated into primitives

(arrays, structs, enums) 
 Enable structuring, information hiding ………........... Structures cannot be just macros that are 

instantiated and inlined
 Provide a safe and modern type system ……. Physical units, sum types



V. Requirements
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Testing and verification
 Easy testing ……………… Write tests in the same language and 

compose concurrently with production code
 Integration with existing simulation ……………… E.g.: Simulink, Functional Mockup Interface

frameworks
Generate verification conditions for ……………… Lots of assertions (no 0-division, no out-of-

abstract interpreters bounds access, …) are never specified by the 
programmer but are trivial to generate and 
significantly help to find bugs



V. Not requirements
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What we do not need
 Hardware related issues
 Single value per tick
 Reordering of commands
 Fine grained causality based on logical constructiveness or dynamic analyses
 Full range of preemption expressions

 And hence no
 Schizophrenia
 Fix point computations
 Intricate surface/depth compilation

By focusing we gain a few degrees of freedom



VI. Outlook
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No off-the-shelf solution available which meets above requirements
 Theoretically most requirements are straight forward
 Some however are not
 True parallelism
 Deployment
 OO, references vs. causality

We have a vision that all requirements together lead to a new language with a new compiler and IDE 
that support (most of) the above

 And we believe this will significantly improve the implementation methodology of embedded systems
 And there is the first practical evidence that a paradigm shift may be of interest to real-life developers

Do we need something new? 
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