SYNCHRON 2016

TOWARDS BETTER EMBEDDED SOF TWARE

JENS BRANDT, FRIEDRICH GRETZ, FRANZ-JOSEF GROSCH

Agenda

1. Background

2. State-of-the-art

3. Conceptual deficiencies

4. The link to synchronous languages
5. Requirements of embedded systems

6. Outlook: A new language?

Brandt/ Gretz / Grosch | 06.12.2016 @ BOSCH
SN e o

|. Background
Our domain

Many Bosch products are driven by embedded software

‘ |
J |
i_,,_,;!; <
» Rapid increase in: » Little progress in: » We need to advance:
» number of products, » methodology and tools » Analysis
» their functionality, » Architecture
» complexity » Implementation

» Verification .
3 CR/AEAL | 06.12.2016 @ BOSCH

Il. State-of-the-art
Programming Frontend

» Assembler - C > Simulink, ASCET

@ sxewt g
Wal
» Y dp

»Xd
) =Ydi% " &
s :

" —»H~=0
(D) X IF_J val :E*;:D 4
-ij . I e

-|_~Zo\—

6
!

4 CR/AEA1]06.12.2016 @ BOSCH
o

Il. State-of-the-art
Deployment Backend

» Runnables: void-void C function > Stack of active tasks

» A running task may be preempted by tasks with
higher priority

» | £() |no inputs, no outputs, operates on global

variables

T. rO 50 [t0]

» Runnables are ordered in sequence to form a task T _
» Sequence| | | f() |80 | h()

» Tasks may be ordered by priority

T kO [20 TOT n() | 00)

» Tasks ~ clock rates (e.g. 1ms, 5ms, 10ms, ...) T £O [80 [hO
T a0 [bO [cO) [dO

For more details see: “Real world automotive benchmark for free” by Simon Kramer, Dirk Ziegenbein and Arne Hamann, WATERS 2015

CR/AEA1 | 06.12.2016

& BOSCH
e

I1l. Conceptual deficiencies

» Handling concurrency:
» Who is writing what variable and when?

» Ordering of runnables and tasks determined by a separate task list in XML

— Implicitly introduces prev and current accesses without ever being documented
» State machine behaviour is either implicit or formulated in a separate monolithic model
» Nondeterminism:

» Above ordering has no formal criteria

» Communication between concurrent threads is non-deterministic

CR/AEA1 | 06.12.2016

& BOSCH
ir

I1l. Conceptual deficiencies
Effects of deficiencies

» Adding new software is hard

» Most effort is spent in:

» Reverse engineering to find out who is writing what variable and when

» Composition of software components, requiring lots of meta data about side effects, timing constraints, ...
» Lack of software qualities such as:

» Determinism & testability

» Readability

> Flexibility (refactoring!)

» Modularity

CR/AEA1 | 06.12.2016

& BOSCH
ir

V. The link to synchronous languages
Why we are here

» We believe we can benefit greatly from the synchronous programming approach:
» Behaviour over time
» Preemptions and mode switches
» Structured programming of state machines
» Causality of concurrent functions

» We hope your research may benefit from industrial challenge

» So where is the challenge?

CR/AEA1]06.12.2016 @ BOSCH
T

V. Requirements

Clear focus

» Software Not hardware

» Embedded Not “IT’-level software

» Reactive Trigger-response execution

» Real-time Time is functional, not a performance

measure

» Resource-constrained hardware No heap allocation, garbage collection

» Scale to software with millions lines of code Not “wrist watch”
9 CR/AEA1 | 06.12.2016 @/ BOSCH

V. Requirements
Domain orientation

» Control intensive systems
» Intertwined functionality

» Computations and switching behaviour
» Preemptions

» Causality Relaxed notion of causality is sufficient for software
= concurrent processes + shared variables + barriers!

Synchronous programming = Unique writer and
write before read between each pair of barriers.

1 O CR/AEA1 | 06.12.2016

V. Requirements
Compatible with the past and future

» Integration of legacy code

» Integration in legacy code

» Support separate compilation

» Address deployment on multi-core platforms

» Program across threads, cores maintaining
guarantees such as causality

CR/AEA1 | 06.12.2016

& BOSCH

V. Requirements

Deployment
» Efficient code generation No definitive consensus yet?
» Safe code generation Runtime errors shall be impossible on a final

system

» Integrate synchronous “execution shell” with existing
real-time OS environments

» Low level mapping to cores and tasks

CR/AEA1 | 06.12.2016

V. Requirements
Developer orientation

» Readable programs Programs are mostly read,
sometimes adapted and
almost never written from scratch

» Crystal clear semantics Make it hard to write nonsense,
make it obvious what any piece of code does

» Express stateflow in control flow

» Provide structured data types These cannot be disintegrated into primitives
(arrays, structs, enums)
» Enable structuring, information hiding Structures cannot be just macros that are
instantiated and inlined
» Provide a safe and modern type system Physical units, sum types
13 crment o2z

@© BOSCH

V. Requirements
Testing and verification

» Easy testing

» Integration with existing simulation
frameworks

» Generate verification conditions for
abstract interpreters

14 CR/AEA1 | 06.12.2016

Write tests in the same language and
compose concurrently with production code

E.g.: Simulink, Functional Mockup Interface

Lots of assertions (no O-division, no out-of-
bounds access, ...) are never specified by the
programmer but are trivial to generate and
significantly help to find bugs

V. Not requirements
By focusing we gain a few degrees of freedom

» What we do not need
» Hardware related issues
Single value per tick
Reordering of commands

>
>
» Fine grained causality based on logical constructiveness or dynamic analyses
» Full range of preemption expressions

» And hence no
» Schizophrenia
» Fix point computations
» Intricate surface/depth compilation

CR/AEA1 | 06.12.2016

& BOSCH

VI. Outlook
Do we need something new?

» No off-the-shelf solution available which meets above requirements
» Theoretically most requirements are straight forward

» Some however are not
» True parallelism
» Deployment
» OO, references vs. causality

» We have a vision that all requirements together lead to a new language with a new compiler and IDE
that support (most of) the above

» And we believe this will significantly improve the implementation methodology of embedded systems
» And there is the first practical evidence that a paradigm shift may be of interest to real-life developers

CR/AEA1 | 06.12.2016

& BOSCH

	Synchron 2016
	Agenda
	Our domain
	Programming Frontend
	Deployment Backend
	Slide Number 6
	Effects of deficiencies�
	Why we are here
	Clear focus
	Domain orientation
	Compatible with the past and future
	Deployment
	Developer orientation
	Testing and verification
	By focusing we gain a few degrees of freedom
	Do we need something new? �

