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Abstract

I characterize the optimal accuracy level r of an unbiased Tullock contest be-
tween two players with heterogeneous prize valuations. The designer maximizes
the winning probability of the strong player or the winner’s expected valuation by
choosing a contest with an all-pay auction equilibrium (r ≥ 2). By contrast, if she
aims at maximizing the expected aggregate effort or the winner’s expected effort,
she will choose a contest with a pure-strategy equilibrium, and the optimal accuracy
level r < 2 decreases in the players’ heterogeneity. Finally, a contest designer who
faces a tradeoff between selection quality and minimum (maximum) effort will never
(may) chose a contest with a semi-mixed equilibrium.
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1 Introduction

I characterize the optimal accuracy level, sometimes also referred to as decisiveness pa-
rameter or discriminatory power, of an unbiased Tullock contest between two players with
heterogeneous prize valuations under different objectives. As the accuracy level affects
efforts, winning probabilities, and payoffs, it is an important tool for designing a contest,
particularly when an explicit bias or affirmative action is not feasible. Real world examples
are countless and range from defining the type and size of the jury in litigation (number
of jurors/judges) to specifying the rules in sports like car racing (technical limitations),
table tennis (size of the ball), or soccer (tie breaking regulations).

The analysis thus contributes to the large literature on (optimal) contest design. More
specifically, it complements the articles that emphasize the role of the accuracy of the
contest success function, e.g., Nti (2004), Alcalde and Dahm (2010), Wang (2010), and, in
particular, Ewerhart (2017) who provides a revenue ranking for optimally biased contests.

The paper is organized as follows. Section 2 introduces the formal set-up. In Sections
3 and 4, I examine the optimal accuracy level under the assumptions that the designer
maximizes the winning probability of the strong player, the winner’s expected valuation,
the expected aggregate effort, and the winner’s expected effort, respectively. Section 5
discusses the optimal solution to different tradeoffs between selection quality and effort.
Section 6 concludes.

2 Set-up and Notation

I consider the standard model of a Tullock contest (Tullock, 1980) between two play-
ers with linear effort costs and use the same notation as Ewerhart (2017). Player i’s
probability of winning is

pi =

{
1/2 if x1 = x2 = 0,
(xi)

r

(x1)r+(x2)r
else,

where xi denotes the effort of player i ∈ {1, 2} and r ≥ 0 describes the accuracy level of
the contest.1 Player i ∈ {1, 2} chooses xi to maximize the payoff Πi = piVi − xi, where
the players’ valuations for the prize are normalized to V1 = 1 and V2 = ω ∈ (0, 1). I thus
refer to player 1 (2) as the strong (weak) player.

Propositions 1 – 4 in Ewerhart (2017) show that, for any given ω ∈ (0, 1),

� there is a unique Nash equilibrium, which is in pure strategies, if 0 ≤ r ≤ r̄,

� there is a unique Nash equilibrium, which is in semi-mixed strategies, if r̄ < r ≤ 2,

� any Nash equilibrium is an all-pay auction equilibrium2 in mixed strategies if 2 < r,

where r̄ is an implicit function of ω defined by

r̄ = 1 + ωr̄ ⇔ ω = (r̄ − 1)1/r̄. (1)

Where appropriate, I mark equilibrium values with an asterisk.

1Skaperdas (1996) provides an axiomatic foundation for this type of contest success function.
2I.e., it yields the same expected efforts, winning probabilities and expected payoffs as well as the

same expected revenue R for the contest designer as the unique equilibrium of the corresponding all-pay
auction.
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3 Maximization of Selection Quality

I first consider different objectives associated with the selection quality of the contest.

3.1 Maximization of the Strong Player’s Winning Probability

Ewerhart (2017, Table 1) shows that for all ω ∈ (0, 1) we have dp∗1/dr > 0 if 0 < r ≤ 2
and dp∗1/dr = 0 if 2 < r; hence:

Proposition 1. For any ω ∈ (0, 1), the designer maximizes the strong player’s winning
probability by choosing any contest with an all-pay auction equilibrium (r ≥ 2).

3.2 Maximization of the Winner’s Expected Valuation

Since the winner’s expected equilibrium valuation equals

EV = p∗1 · 1 + (1− p∗1) · ω = ω + (1− ω)p∗1

and 1 − ω > 0 for all ω ∈ (0, 1), a contest that maximizes the strong player’s winning
probability also maximizes the winner’s expected valuation.

Proposition 2. For any ω ∈ (0, 1), the designer maximizes the winner’s expected valua-
tion by choosing any contest with an all-pay auction equilibrium (r ≥ 2).

4 Effort Maximization

I now consider different objectives associated with effort maximization.

4.1 Maximization of Aggregate Effort

For any ω ∈ (0, 1), Nti (2004) determines the accuracy level r that maximizes aggregate
effort in the range of pure strategy equilibria, i.e., under the constraint r ≤ r̄. Alcalde
and Dahm (2010) show that for any r ≥ 2, there exists an all-pay auction equilibrium,
and for any r > 2, any equilibrium is an all-pay auction equilibrium. Epstein et al. (2013)
show that, for any ω ∈ (0, 1), the accuracy level r that maximizes aggregate effort in the
range of pure strategy equilibria also leads to a higher aggregate effort than an all-pay
auction (r ≥ 2). Wang (2010) determines a semi-mixed equilibrium for all r̄ < r ≤ 2 and
shows that, within this class of equilibria, the aggregate equilibrium effort R decreases in
the accuracy level r for any ω ∈ (0, 1), i.e., dR/dr < 0 if r̄ < r ≤ 2. Finally, Ewerhart
(2017) shows that for any r ≤ 2 the equilibrium is unique.

Together, these results allow for a unique identification of the optimal accuracy level.
More explicitly, Ewerhart (2017, Table 1) shows that for any ω ∈ (0, 1), aggregate equi-
librium effort R is a continuous function of r. This implies that, for any ω ∈ (0, 1), the
optimal accuracy level must satisfy r ≤ r̄. It thus coincides with the optimal accuracy
level within the region of pure-strategy equilibria as characterized by Nti (2004). I briefly
summarize his analysis and add an exact equation for the threshold he approximates (cf.
Nti, 2004, Table 1 and Proposition 3).

For any ω ∈ (0, 1), the optimal accuracy level r maximizes aggregate equilibrium

effort R = rωr(1+ω)
(1+ωr)2

subject to the constraint that r ≤ r̄. The first order condition
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dR/dr = (1 + w) wr

(1+wr)3
F (w, r) = 0 for an unconstrained maximizer rA implies

F (ω, rA) := 1 + ωrA + (1− ωrA) ln(ωrA) = 0. (2)

Straightforward calculations show that F (ω, 0) = 2 > 0, limrA→∞ F (ω, rA) = −∞, and
∂F/∂rA < 0 for all ω ∈ (0, 1). As dR/dr and F have the same sign, R is inverted U-
shaped and single-peaked. Moreover, ∂F/∂ω > 0 for all rA > 0. Thus, equation 2 defines

an implicit function rA(ω) satisfying drA/dω = − ∂F/∂ω
∂F/∂rA

> 0 for all ω ∈ (0, 1). Notice

from equation (1) that r̄ is also an increasing function of ω ∈ (0, 1).

Proposition 3. For any ω ∈ (0, 1), aggregate effort is an inverted U-shaped function of
the accuracy level. The designer maximizes aggregate effort by choosing a contest with a
pure-strategy equilibrium. The optimal accuracy level equals r = min{rA, r̄} and decreases
as the players’ heterogeneity increases: dr/dω > 0.3

Inserting ω = (rA − 1)1/rA into equation (2) implies

f(rA) := rA + (2− rA) ln(rA − 1) = 0.

It is straightforward to show that f is strictly increasing for all rA ∈ (1, 2) and has a
unique root which I denote by r̄A. Therefore, rA < r̄ if and only if rA < r̄A or, equivalently,
ω < ω̄A, where

ω̄A := (r̄A − 1)1/r̄A and r̄A + (2− r̄A) ln(r̄A − 1) = 0. (3)

Corollary 1. The designer maximizes aggregate effort by choosing

(a) r = rA if 0 < ω < ω̄A,

(b) r = r̄ if ω̄A ≤ ω < 1.

Figure 1 illustrates Proposition 3 and Corollary 1. The solid (dotted) curve depicts
rA (r̄) as a function of ω. The curves intersect at some point A ≈ (0.2804; 1.2137) to the
left (right) of which the optimal accuracy level is unconstrained (constrained).

4.2 Maximization of the Winner’s Expected Effort

Straightforward calculations show that, for all ω ∈ (0, 1), the winner’s expected equilib-
rium effort EXW = p1x1 + p2x2 is also a continuous function of r with dEXW/dr < 0 for
r̄ < r ≤ 2. Again, these observations imply that, for any ω ∈ (0, 1), the optimal accuracy
level must satisfy r ≤ r̄ and thus coincides with the optimal accuracy level within the
region of pure-strategy equilibria.

For any ω ∈ (0, 1), the optimal accuracy level r maximizes the winner’s expected

equilibrium effort EXW = rωr(1+ωr+1)
(1+ωr)3

subject to the constraint that r ≤ r̄. The first order

condition dEXW/dr = ωr

(1+ωr)4
G(ω, r) = 0 for an unconstrained maximizer rB implies

G(ω, rB) := 1+ln(ωrB)+ωrB [1−2 ln(ωrB)]+ωrB+1[1+2 ln(ωrB)]+ω2rB+1[1−ln(ωrB)] = 0.
(4)

3In a recent working paper, Chowdhury et al. (2020, Observation 1.2.1) make a similar observation
and provide graphical representations (see also Wang, 2010, Figure 1).
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Figure 1: Optimal accuracy level and heterogeneity

Straightforward calculations show that G(ω, 0) = 2(1 +ω) > 0, limrB→∞G(ω, rB) = −∞,
and ∂G/∂rB < 0 for all ω ∈ (0, 1). As dEXW/dr and G have the same sign, EXW is
inverted U-shaped and single-peaked.

Proposition 4. For any ω ∈ (0, 1), the winner’s expected effort is an inverted U-shaped
function of the accuracy level. The designer maximizes the winner’s expected effort by
choosing a contest with a pure-strategy equilibrium. The optimal accuracy level equals
r = min{rB, r̄}.

Moreover, numerical approximations suggest drB/dω = − ∂G/∂ω
∂G/∂rB

> 0 for all ω ∈ (0, 1),
i.e., the optimal accuracy level decreases as the players’ heterogeneity increases.

Inserting ω = (rB − 1)1/rB into equation (2) implies

g(rB) := rB + rB(rB − 1)
1+rB
rB + ln(rB − 1)[3− 2rB + (3− rB)(rB − 1)

1+rB
rB ] = 0.

One can show that g is strictly increasing4 and has a unique root which I denote by r̄B.
Therefore, rB < r̄ if and only if rB < r̄B or, equivalently, ω < ω̄B, where

ω̄B := (r̄B − 1)1/r̄B and g(r̄B) = 0. (5)

Corollary 2. The designer maximizes the winner’s expected effort by choosing

(a) r = rB if 0 < ω < ω̄B,

(b) r = r̄ if ω̄B ≤ ω < 1.

4I used the software Mathematica to verify that dg/drB > 0 for all rB ∈ (1, 2).
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Figure 1 illustrates Proposition 4 and its Corollary. The dashed (dotted) curve depicts
rB (r̄) as a function of ω. The curves intersect at some point B ≈ (0.2337; 1.1799) to
the left (right) of which the optimal accuracy level is unconstrained (constrained). While
maximizing the aggregate effort is equivalent to maximizing the players’ average effort
(with equal weights), maximizing the winner’s expected effort is equivalent to maximizing
the players’ weighted average effort with a higher equilibrium weight p1 > p2 on the
stronger player. Intuitively, the solution to this problem is thus a compromise between
the maximization of aggregate effort and the maximization of the strong player’s winning
probability. As a result, rB ≥ rA for all ω ∈ (0, 1). Hence, the range of heterogeneities ω
for which rB is constrained by r̄ must be larger than that for which rA is constrained by
r̄, i.e., 0 < ω̄B < ω̄A.

In the next section, I characterize the optimal compromise between conflicting objec-
tives more generally.

5 Conflicting Objectives

Contest designers often have multiple objectives which may conflict. During a pre-election,
for example, a political party tries to select the best candidate but, at the same time, limit
pre-election efforts in order to save resources for the main election campaign (Bruckner
and Sahm, 2022). By contrast, the organizer of a qualifying competition tries to select the
best athlete and provoke as much effort as possible because a highly intense competition
attracts more attention from spectators and sponsors.

5.1 Tradeoff between Selection Quality and Minimum Effort

Obviously, the contest that minimizes aggregate effort is purely random: an accuracy
level of r = 0 leads to zero efforts. The previous analysis thus suggests that a designer
who optimally solves a tradeoff between selection quality and minimum aggregate effort
(rent dissipation) will never choose a contest with a semi-mixed equilibrium because, in
this range, an increasing accuracy implies both, better selection and lower efforts. More
precisely, for any ω ∈ (0, 1), he will choose an all-pay auction (r∗ ≥ 2) if and only if he puts
sufficiently much weight on selection quality. Otherwise, he will choose an accuracy level
r∗ < min{rA, r̄} that leads to a pure-strategy equilibrium. A smaller upper-bound for
the optimal r∗ is then given by the (smallest) accuracy level r that equates the aggregate
effort in the pure-strategy equilibrium and the expected aggregate effort of the all-pay
auction equilibrium:

rωr(1 + ω)

(1 + ωr)2
=

(1 + ω)ω

2
⇔ H(ω, r) := (1 + ωr)2 − 2rωr−1 = 0.

5.2 Tradeoff between Selection Quality and Maximum Effort

By contrast, a designer who optimally solves a tradeoff between selection quality and
maximum aggregate effort will always choose an accuracy level r that is larger than the
one that maximizes aggregate effort. In particular, he may choose a contest with a semi-
mixed equilibrium (if he puts sufficiently much weight on selection quality), and will
definitely chose an accuracy level r ≥ r̄ if ω̄A ≤ ω < 1 (see Corollary 1).
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6 Conclusion

I have examined the optimal accuracy level r of an unbiased Tullock contest between
two players with heterogeneous prize valuations under different objectives. The designer
maximizes the winning probability of the strong player or the winner’s expected valuation
by choosing a contest with an all-pay auction equilibrium (r ≥ 2). By contrast, if she
aims at maximizing the expected aggregate effort or the winner’s expected effort, she
will choose a contest with a pure-strategy equilibrium, and the optimal accuracy level
r < 2 decreases in the players’ heterogeneity. Finally, a contest designer who faces a
tradeoff between selection quality and minimum (maximum) effort will never (may) chose
a contest with a semi-mixed equilibrium.
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