
CMP: A UML Context Modeling Profile for Mobile Distributed
Systems

Christof Simons
Distributed Systems Group

Otto-Friedrich-Universität Bamberg
96045 Bamberg, Germany

christof.simons@wiai.uni-bamberg.de

Abstract

This paper proposes the Context Modeling Profile
(CMP), a lightweight UML extension, as a visual lan-
guage for context models in mobile distributed systems.
The resulting models visualize meta information of the
context, i.e. source and validity of context information,
and reflect privacy restrictions. The profile provides
several well-formedness rules for context models sup-
porting the development of context-aware mobile appli-
cations through an adequate visual modeling language.
A case study is used to illustrate the approach.

1 Introduction

The context of a user is an interesting research topic
in mobile computing. The user context enables tech-
nologies like context-based provision, discovery and
usage of services and context-aware applications [2].
These technologies seem to be a promising way to en-
hance the capabilities of mobile devices, making them
appear more intelligent, eliminate interface restrictions
and leverage the support of the user by the device.

The context of the user can be defined as the set of
information about the user himself and his environment
[10]. Typical information in the context of a user are
his name, his location, his current activity or persons
nearby [1]. Due to the mobility of the user and his
device, the context of the user is not a steady set of
information but is changing irregularly.

In the development process of a context-aware appli-
cation that should adapt to the user context the devel-
oper has to define, which context information are rele-
vant for the adaption of the application. The structure
of the context, i.e. the properties and the connections
between the information have to be provided. Hence,

the developer has to build an application specific model
of the user context, resulting in an artifact of the de-
velopment process, the context model.

The context model must not only contain the infor-
mation type definitions but also reflect meta informa-
tion about the context. This means for instance that
it must indicate that the birth date of a person never
alters but the current location of a person changes fre-
quently. This is essential when the application should
base upon a framework for context-aware applications.
The services which are provided by the framework like
storage support or checking the validity of the context
highly depend on these meta information.

Visual Languages play an important role in software
engineering because graphical models are better read-
able and understandable by human beings. The most
popular object oriented modeling language is the UML
(Unified Modeling Language, [7]). The UML provides
different diagram types and also allows the separation
of concerns by using several diagrams to focus differ-
ent aspects of a software system. A huge number of
UML based development environments exist, offering
features like model transformation, model validation
and code generation.

This paper shows how the context of a context-aware
application for mobile distributed systems can be mod-
eled using specialized UML class diagrams. Therefore,
the general characteristics of the context are explained
and the context model of a meeting system is proposed
in section 2. The shortcomings of this approach are
discussed afterwards and the usage of a UML profile
is proposed as a solution. In section 3 CMP, our Con-
text Modeling Profile, is introduced. In section 4 the
context model of the meeting system is improved by
applying CMP to the original context model. Related
work is referred to in section 5 and the final section
provides a conclusion and future work.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Figure 1. Extract of the context model of the meeting system

2 Case Study: Meeting System

The meeting system provided as a case study should
support members of a university department in making
appointments. This means that the schedules of sev-
eral department members have to be matched to find
a free slot for a meeting. Information about the user’s
current activity and location should be provided by the
system, making it possible for other persons to query
these information. When attending a meeting the ac-
tivity of the user should be set by the system to busy
automatically, indicating that the person should not be
interrupted by other users of the system. The partici-
pants of a meeting should also be able to take personal
notes during the meeting. These notes should be as-
sociated with the meeting automatically such that the
user can access these notes more easy later on.

2.1 Technical requirements

The meeting system should support users in a mo-
bile distributed system which are using mobile devices
like PDAs. One important requirement is that the sys-
tem must not depend on a central component like a
storage node for storing the context of the users. The
context of the user can contain personal information,
hence privacy issues have to be regarded. Privacy is
basically a problem of control [15]. In order to leverage
the user’s control over his personal information a cen-
tral storage node should not be used. Therefore, the
global context, the context information of all users, has
to be distributed among the users of the system.

The mobile device of a user should only store the in-
dividual context of a user. The individual user context
is the set of information about the user and his envi-
ronment which are relevant to the specific user. This
means if person A is interested in the current location
of person B then this information is part of the indi-
vidual context of user A and is stored on A’s device.

The location of person C which is not of interest to
person A is therefore not part of person A’s context.

The concept of an individual user context also has
impact on the context model itself. In order to be able
to exchange only the information a user is interested in
the context model provides type definitions for small,
autonomous context items. These context items rep-
resent atomic information which are exchanged by the
users. The context items are linked, making it possible
to access other context items by following these links.

2.2 The meeting system’s context model

Figure 1 shows an extract of the context model of
the meeting system. The model consists of small classes
each representing a context item type. A context item
of type Person has the properties forename and sur-
name and is linked with other context items, e. g. an
activity or a room. The end names of the associations
are used to access the linked context items.

When exchanging a context item, only the atomic
item itself is transferred. Other items linked to this
context item are not exchanged automatically by the
system. This facilitates the transfer of a context item
of type Person, representing a person p, and not the
linked context items, e. g. p’s current location. So this
model provides a suitable way to achieve the intended
distributed storage of individual user contexts.

But meta information about the context are not
contained in the model yet. First of all, links between
context items are mostly time variant. The current
location of a person changes frequently which means
that the known location of a user might not be up-to-
date. The office association between Person and Room
is also not permanent, it can change if a person moves
to a different office. But in comparison to the current
location of a person the office of a department mem-
ber changes sparely. The validity of the links between
context items is a meta information of the context, a

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

property of the association connecting the item types.
The source of the context item, which is a measure of

information quality, is another important aspect. Con-
text items provided by users have a good quality based
upon the assumption that users do not generate faulty
information on purpose. E. g. the current activity of a
meeting system’s user can be set by the user himself,
indicating that the user is responsible for the set activ-
ity. Context items generated by sensors have a worse
quality than user provided items, because sensors are
generally not obeyed by humans. A sensor can provide
the temperature associated with a certain location, the
place of the sensor. But context items can also be de-
rived from other items. In the meeting system the ac-
tivity of a person can also be derived from the schedule
of the person: if a person is attending a meeting then
the activity of the person is busy. The reliability of the
way of deriving a context item, the derivation rule, also
influences the quality of the derived item.

Privacy is an aspect which is essential for context-
aware systems. The user context can contain personal
information which are not intended to be known to
other users. In the meeting system the meetings notes
taken by a user can contain private information which
should just be accessible by the participants of the
meeting. This means that access rights should be con-
tained in the context model, indicating which access
control mechanism should be used for linked items.

Several types of access rights for context items can
be distinguished. The access to some context items
needs not be restricted such that all users in the sys-
tem can achieve these items. But some context items
should only be used by applications running on the
user’s device, i.e. used by the owner of the item, and
not be accessible by other users. A well suited ex-
ample for such private context items are credit card
data which should be handled with care. Some context
items should be available to members of a group. In
the meeting system access to the current activity of a
person could be restricted to a group, e.g. all members
of a department, such that the activity of a department
member is only known to his colleagues.

Group access rights require the management of
group memberships which sometimes is not adequate.
A less complex way of restricting access can be achieved
by user-dependant access rights. This means that the
owner of a context item explicitly grants access to a
context item depending on the identity of other users.

2.3 Modeling approach reviewed

As depicted in figure 1 the context can be modeled
using a UML class diagram. It is also possible to denote

the characteristics of context, e. g. the access rights,
in the context model by using comments. Derivation
rules can be specified by adding constraints to model
elements and derived context items can be notated the
UML way with a preceding ”/”, like the derived activ-
ity of a person in the meeting system. But the deficit
of this approach is that comments are misused and the
semantics of the comments remain unclear. The result-
ing models can also be invalid, e. g. if does not contain
a derivation rule for every derived association. Also,
the context modeler is not forced to model the context
as intended using small, connected context items.

This restriction can be enforced by defining a UML
profile which can be applied to UML models and re-
stricts the ways how to use the UML. UML profiles are
supported by a huge number of modeling tools such
that the definition of a UML profile for context models
is an interesting option to support the context modeler.

3 CMP: The Context Modeling Profile

3.1 The UML profile mechanism

A profile provides the ability to tailor a MOF (Meta
object Facility, [8]) based metamodel for different plat-
forms or domains by extending metaclasses from the
metamodel. This means that the UML metamodel,
which is based on MOF, can be specialized by a profile
to adapt it to the domain context modeling. A pro-
file is a lightweight extension of a metamodel, i.e. the
specialized semantics must not contradict the seman-
tics of the metamodel. But a profile provides ways to
introduce a special terminology for a domain, to add
semantics to metamodels and, which is vital, to restrict
the way how to use the metamodel.

Basically, a profile is a package which contains
stereotypes and constraints. A stereotype defines how
an existing metaclass of the metamodel may be ex-
tended. A stereotype can be applied to those model
elements in an UML model which are instances of
the metaclass the stereotype extends. A profile can
also provide required extension associations between
a stereotype and its metaclasses. This results in the
application of the stereotype to every instance of the
stereotyped metaclass in the package or model the pro-
file is applied to. Stereotypes can also own properties
which are referred to as tag definitions. Tag definitions
allow the specification of values, called tagged values,
for all model elements the stereotype is applied to.

In general, stereotypes are used to define a domain
specific terminology. To enrich the semantics of a UML
model and restrict the usage of a metamodel the profile
has to provide constraints which can be specified by

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Figure 2. The context UML profile

using the OCL (Object Constraint Language, [9]). A
profile constraint is a well-formedness rule, which is
checked when the profile is applied to the model. A
constraint represents a condition, which can be added
to a model element, stating that an instance of the
model element must hold this condition. Therefore, a
constraint added to a stereotype must be fulfilled by
all model elements the stereotype is applied to.

But certain restrictions exist in how a profile as a
lightweight extension mechanism can adapt a meta-
model. The constraints contained in the profile must
be more restrictive than (but consistent with) the con-
straints of the metamodel, i.e. a profile may only spe-
cialize a metamodel. The metamodel must be extended
by the profile without changes. New metaclasses must
not be inserted in the class hierarchy of the metamodel
and it is forbidden to modify the class definitions in the
metamodel. It is therefore not allowed to have associ-
ations between stereotypes or stereotypes and meta-
classes in profiles, because this is a modification of
metaclasses [7]. But a similar result can be achieved
by using constraints in the profile, which will be seen
later on.

3.2 Stereotypes of CMP

As illustrated in the meeting system, the context
model consists of the types of the context items in the
user context. These classes are connected with associ-
ations which provide meta information about the con-
text, i.e. source, validity and access rights. One can
define a stereotype ContextAssociation, extending the
metaclass Association, with three tag definitions, each

representing one meta information. When applying the
stereotype ContextAssociation the modeler can provide
values for these tag values. In the meeting system the
modeler could apply the stereotype to the association
between Person and Activity and set the source prop-
erty to a value like userprovided. But this approach has
one deficit: in current UML modeling tools the tagged
values are not shown in the diagram, they can just be
set and retrieved by accessing property dialogs of model
elements. So the meta information of the context are
not part of the graphical context model, which in some
way downsizes the model’s expressiveness.

In order to stress the importance of privacy aspects
and the source of context items as an indication of con-
text quality, we developed CMP as depicted in figure
2. The specification of many stereotypes, each repre-
senting one source type or access right, results in the
graphical annotation of the stereotype names at asso-
ciations these stereotypes are applied to. The profile
abstains from using required extension associations be-
tween stereotypes and metaclasses, making it possible
to apply the stereotypes to designated and not to all
elements of a model or package.

CMP contains the stereotype ContextItem extend-
ing the metaclass Class. This enables the context mod-
eler to apply this stereotype to classes representing
types of context items like the class Person in the meet-
ing system. The stereotype ContextItemEnum, extend-
ing Enumeration, can be used to model context item
types where only a predefined set of context items ex-
ists, like the type Activity in the meeting system.

The stereotype ContextAssociation extends the
metaclass Association. This stereotype is abstract such

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

that it can not be applied to associations in the pro-
filed context model. The existence of ContextAssocia-
tion has a technical background, because it eases the
specification of OCL constraints which should restrict
all stereotyped associations in the context model.

The source of context items is represented by the
abstract stereotype SourceAssociation which special-
izes ContextAssociation and therefore does not need
to extend a metaclass. The stereotypes userprovided,
sensed and derived are all specializations of Source-
Association and hence can be applied to associations.
The stereotype userprovided indicates that the user
provided the context item himself, sensed denotes con-
text items taht are provided by sensors and derived is
intended for associations between context items which
are derived from other context items. The derivation
rules can be expressed in the context model by using
OCL constraints and the stereotype DerivationRule.

The validity degree of links between context items
is not represented by stereotypes but by the property
validity of the stereotype SourceAssociation. Hence,
the modeler can specify validity of an association af-
ter applying a stereotype like userprovided. This way
of representing the validity is founded on the design
decision that the validity is an important meta infor-
mation of the context and must therefore be part of the
model, but needs not to be part of the graphical con-
text model. The graphical context model should only
stress the source and the access rights of context items.

Four different validity degrees for links between con-
text items are distinguished, provided by the enumer-
ation Validity. Associations between context items
which are never altered like the birth date of a per-
son can be denoted with the validity permanent. In
the meeting system, the office of a department member
may change, but does not change often, hence the valid-
ity infrequent should be used by the modeler. The cur-
rent location of a user represents a frequent changing
information and the current system time is a volatile
information which is out-of-date right after acquisition.

Privacy of context is vital for acceptance of context-
aware applications and often neglected in context mod-
els. Hence, the access rights of context items are real-
ized by stereotypes, making them easily visible in the
context model. The stereotype AccessAssociation is
abstract and has only technical purposes. The appli-
cable stereotypes to express access rights in context
models are owner, restricted, group and all. The stereo-
type owner is used to model private context items like
the credit card example mentioned previously. Asso-
ciations with an applied stereotype restricted indicate
user-dependent access, while the stereotype group de-
notes access for members of a group. The stereotype

all indicates no access restriction.

3.3 Well-formedness rules of CMP

Up to this point, the profile only contains stereo-
types which provide the terminology of the context
modeling domain. The well-formedness of a context
model can only be accomplished by adding constraints
to the stereotypes [4]. These constraints are evaluated
by modeling tools when the profile is applied to a con-
text model or when the modeler triggers a model vali-
dation. Hence, the constraints can be used to force con-
text modelers to respect the rules of modeling context.
In the following, the rules for the different elements of
our context profile are discussed in more detail.

The stereotype ContextItem should be applied to
a class representing the type of a context item. The
following rules have to be respected when modeling a
context item type:

CI1 All attributes of a context item must have a
primitive type (like String or Integer) or a type
representing another context item type, i.e. a
type with an applied stereotype ContextItem or
ContextItemEnum.

CI2 All attributes of a context item which do not have
a primitive type must be members of an associa-
tion, i.e. the context item type and the type of the
attribute are connected by an association.

CI3 Exactly one access right stereotype and exactly
one source stereotype must be applied to all asso-
ciations between the context item type and other
types.

CI4 The stereotype ContextItem must be applied to
all super types of a context item type. A context
item type can therefore not inherit functionality
or attributes from types that do not represent a
context item type.

CI5 The context item type must possess exactly one
derivation rule for every derived attribute.

The abstract stereotype ContextAssociation is used
for technical purposes to restrict all associations be-
tween context item types in a context model. The fol-
lowing restrictions must be accounted for:

CA1 Associations must only be used to connect context
item types, i.e. types with an applied stereotype
ContextItem or ContextItemEnum.

CA2 Every association in the context model must pos-
sess exactly one access right and exactly one source
stereotype.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

The constraint CA2 seems redundant, because CI3
already restricts the associations between context item
types. But CA2 assures that a stereotype extending
Association may only be applied to associations be-
tween context item types. Removing CA2 from the
profile makes it possible to apply the stereotype to any
association, also associations between types which do
not represent context item types, which is not intended.
In order to validate a context model, i.e. check that it
fulfills the restrictions stated above, these constraints
have to be expressed in OCL and must be added to the
stereotypes in the profile.

Links from context items to derived context items
must be modeled by applying the stereotype derived
to the associations. In addition to this, the attribute
must also be marked as derived. The following rule
must be met:

CA3 At least one member of the association has to be
derived.

The following rules must be obeyed when modeling
derivation rules:

DR1 A derivation rule must constrain only one element.

DR2 The language of the constraint must be OCL.

DR3 The constrained element of a derivation rule must
be a class, possessing a derived attribute. The
name of the derivation rule must match the name
of the derived attribute.

DR4 The constrained element of a derivation rules must
represent a context item type.

The rule DR3 can be easily expressed in OCL as
follows:

self.constrainedElement->
exists(elem : uml::Element |
elem.oclIsTypeOf(uml::Class) and
elem.oclAsType(uml::Class).ownedAttribute->
exists(attribute : uml::Property |
attribute.isDerived and
attribute.name = self.name
)

)

The OCL constraint above is checked for every con-
straint in the context model, the stereotype Derivation-
Rule is applied to. The constraint checks if the set of
constrained elements, that every constraint owns, con-
tains at least one element, that is an instance of the
UML metaclass Class. The set of properties owned by
this class, which can be accessed by the attribute owne-
dAttribute, must contain at least one property with

the attribute isDerived and has the same name as the
derivation rule. Because Constraint is the metaclass of
DerivationRule, it is possible to make use of the prop-
erties of the metaclass Constraint as shown above.

The OCL expression for the rule CI5 can be defined
as follows:

let stereot : String =
’ContextProfile__DerivationRule’ in

self.ownedAttribute->
forAll(attribute : uml::Property |
attribute.isDerived implies
self.ownedRule->
exists(constraint : uml::Constraint |
constraint.name = attribute.name and
constraint.eAnnotations->notEmpty() and
constraint.eAnnotations->
exists(annot |
annot.source = ’appliedStereotypes’
and annot.contents->
exists(c | c.eClass().name = stereot)

)
)

)

This OCL constraint is not completely based on the
UML metamodel. The problem is that there is cur-
rently no unique way in UML modeling tools to query
the applied stereotypes of model elements, which is nec-
essary to restrict the combined usage of stereotypes.
The context profile was developed using the IBM Ra-
tional Software Architect, which is based upon EMF
(Eclipse Modeling Framework). Hence, functionality
of EMF is used in the context model to query the ap-
plied stereotypes.

The other well-formedness rules stated above can be
expressed in OCL in a similar way. The OCL con-
straints defined in CMP make associations between
stereotypes obsolete. The same effect is achieved by
querying the applied stereotypes of model elements.
None of the metaclasses of the UML had to be modi-
fied, such that CMP is a lightweight extension of the
UML metamodel. The approach of checking the ap-
plied stereotypes of model elements to restrict the us-
age of the UML is the proposed way to circumvent the
modification of classes of the UML metamodel.

4 Application of CMP

The application of CMP is illustrated using the
meeting system case study. Figure 3 shows the same
extract of the context model of the meeting system as
figure 1, but the profile has been applied to the model.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Figure 3. The meeting system after applying CMP

The stereotype ContextItem is applied to every type
in the context model except for Activity. The differ-
ent activities of a user are a predefined set of context
items, hence it is modeled as an enumeration and the
stereotype ContextItemEnum is applied to the type.

It is obvious that every association has exactly one
applied stereotype indicating the source and one stereo-
type indicating the access rights. E.g. the current loca-
tion of a person, the room in the department the user
is currently located at, is provided by the user and can
be accessed by all users in the system. The current
location of a user changes frequently, hence the valid-
ity property of the association, which is provided by
the applied stereotype userprovided, is set to frequent.
But as mentioned earlier, the values of properties of
stereotypes, the tagged values, are not shown in the
graphical model such that the validity of the current
location of person can only be retrieved by accessing
the properties of the association.

Every meeting in the set of meetings of a person
is provided by a user. The schedule of department
members should be automatically matched by the sys-
tem, but the appointment must be acknowledged by
the user. Hence, the user is responsible for the cor-
rectness of the context items, making it feasible to ap-
ply the stereotype userprovided to the association. The
stereotype restricted is also applied, indicating that the
owner of the context items, i.e. the user who owns the
device the context items are stored on must manually
grant access. Because a meeting should just be acces-
sible for participants of the meeting, a manual access

decision, denoted by restricted, based on the user iden-
tity is more appropriate than the management of a user
group for every single meeting.

For the same reasons the stereotypes userprovided
and restricted are also applied to the association be-
tween Person and MeetingNotes. But the association
between MeetingNotes and Meeting is noticeable, mak-
ing it possible to access the associated meeting of the
notes by following the corresponding link between the
items. As shown in figure 3, this association is not re-
stricted, which is indicated by the applied stereotype
all. This means that if a user has access to meeting
notes then he can also access the associated meeting
without any check of access rights. This implies that if
and only if a user in the system has access to a context
item representing meeting notes of a meeting, he can
also access the associated meeting.

A person in the meeting system has two links to an
activity context item. One can be accessed by activity,
the other one by derivedActivity. The derivedActivity
is modeled by setting the attribute isDerived of the as-
sociation end, indicated by the preceding ”/”. In figure
3 an xor -constraint is annotated to the associations,
expressing that either the derived activity or the ac-
tivity provided by the user is set, but not both. The
xor -constraint is a predefined constraint of the UML.

The derived activity of a person is an attribute of the
class Person. According to the rules of context model-
ing discussed in the previous section, a derivation rule
with the name derivedActivity is provided, which con-
strains context items of type Person. The derivation

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Figure 4. Modeling of user groups

rule contains the following OCL expression:

let currentTime : Time =
self.user.device.currentTime in

self.meetings->
exists(meeting : Meeting |
meeting.start.compareTo(currentTime) <= 0
and meeting.end.compareTo(currentTime) > 0
)
implies self.derivedActivity = Activity::busy

The above OCL expression states, that if the user
is attending a meeting, which is derived from the cur-
rent system time and the time attributes of the user’s
meetings, then the activity of the user can be set to
busy. Modeling environments support the definition of
OCL constraints and automatically verify, that all con-
straints of a model are syntactically valid. E. g. Hence,
a modeler is notified if an unspecified or deleted prop-
erty of a class is used in a constraint definition. Only
the syntax of constraints can be checked, because a
constraint does not restrict the model elements like a
class, but the instances of the elements, e. g. an object.

User groups, which must be used, when group access
rights are set in a context model, can also be part of
the context model as shown in figure 4. The basic idea
is that every user in the system is member of certain
groups. All group members possess the shared secret
of the group, making it possible to verify, whether an-
other user is also a member of the group. The shared
secret, represented by the abstract context item type
SharedSecret, can only be accessed by the owner of the
device, similar to the previously mentioned credit card
example. Hence, the shared secret can not be automat-
ically distributed among the users in the system, but
must be exchanged using a different channel, hence it
is denoted as userprovided.

5 Related Work

Of course, other approaches for modeling context
exist, most of them based on a designated modeling
language. Henricksen et al. developed CML (Con-
text Modelling Language, [5]), which is an extension
of ORM (Object-Role Modeling). Validity and qual-
ity of context entities are regarded and derivation rules
can be expressed by using predicate logic. But the ap-
proach has several drawbacks: CML is appropriate for
describing context models for distributed systems with
a designated central storage node. But according to
our understanding of privacy the user must have con-
trol of the distribution of private context items, which
can hardly be achieved with a central storage node.
The authors also propose a scheme-based ownership-
notation [6], by which privacy preferences should be
realized. But the modeling of these preferences is left
out. The lack of integration of visual context model,
logical rules and scheme-based ownership-notation can
also arise consistency problems.

Several ontology based context modeling languages
exist, like CoOL by Strang et al. [12], the COBRA on-
tology by Chen and Finin [3] or CONON by Wang et al.
[14]. These modelling languages are all based on OWL
(Web Ontology Language, [13]) and provide a basic
context model which can be extended. Some of these
approaches lack of a metamodel for context models,
limiting the modeler to context models which extend
the basic model. The major benefit of an ontology-
based approach is that reasoning about context is pos-
sible. Reasoning requires computational power, which
can not be provided by PDAs. Hence, these context
modeling languages have a different application do-
main: they are intended for service provision based
on Web Services, intelligent houses or multi-agent sys-
tems. Reasoning also imposes new privacy issues, be-

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

8
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

cause information about the user can be gained without
the user’s knowledge. Most of these languages model
do not address privacy and impose system requirements
which contradict our assumptions about distributed
mobile systems.

Sheng and Benatallah developed Context UML [11],
which is intended to be used for the development of
context-aware Web Services. The authors provide a
metamodel for modeling context, but mainly focus on
the modeling of Web Services. Context UML allows
the modeling of derivation rules, but does not include
means to model user privacy. The authors provide a
heavyweight extension of the UML metamodel by mod-
ifying the UML metaclasses. This approach has the
drawback that the extension can not be used by UML
modeling tools.

6 Conclusions and Future Work

This paper showed that CMP restricts the usage of
the UML such that the UML is successfully adapted
to the domain of context modeling. We provided a
lightweight extension of the UML without modifying
the UML metamodel, which is rarely achieved by other
authors. This approach enables CMP to be integrated
in many UML modeling tools, supporting context mod-
elers with the modeling tool they are used to.

UML models can consist of a set of diagrams, each
focusing a special aspect of a model, making the model
easier to understand. The clear distinction between vi-
sual representation of the model and the model itself,
which is provided by every UML modeling tool, allows
consistent modifications of model elements, improving
the development of context models. UML models can
also be exchanged by using XMI (XML Metadata In-
terchange) documents, making it possible to import the
model into a different modeling environment.

Another benefit of the UML is the support of OCL:
logical rules can be integrated into the model. The
constraints are not specified in addition to the con-
text model or coexist with the model, but are part of
the model. Current tools support the parsing of OCL
expressions such that invalid OCL expression can be
detected on modeling level, i.e. the usage of incorrect
types or properties can easily be detected. The trans-
formation of OCL expressions into programming lan-
guages like C# or Java is also supported by modeling
tools or can be achieved by external tools.

The constraints of CMP depend on EMF, because
a general way to access the applied stereotypes of
a model element is not supported by modeling tools
yet. This seems to be a flaw in the UML metamodel.
When a general way is provided, the constraints will be

adapted. But this will not result in a change of the se-
mantics and usage of CMP such that the modification
of the OCL constraints will not be noticed.

Currently, the context UML profile is applied to
other case studies to verify, whether further modeling
rules can be stated or not. Also, the functionality of the
meeting example is enhanced to verify that the result-
ing models are still easy to understand when dealing
with more complex scenarios. But our approach of ap-
plication specific context models seems to be a more
promising way than the usage and refinement of huge,
predefined models as proposed by other authors. An-
other result of these case studies will be a small, basic
context model, as indicated in figure 4.

Further stereotypes will be added to the profile
which can be used to model dynamic behaviour, i.e.
contextual situations and adaption strategies, which
are necessary to model user triggered and automatic
adaption of context-aware applications. As soon as the
profile is released, tools for the transformation of a pro-
filed context model into programming languages and
an ontology will be implemented, supporting the devel-
opment of context-aware applications with UML. The
overall goal of this work is the provision of a framework
for context-aware applications in a mobile, distributed
systems with respect of the user privacy.

References

[1] G. D. Abowd and A. K. Dey. Towards a better
understanding of context and context-awareness. In
Workshop on The What, Who, Where, When, and
How of Context-Awareness (CHI2000), volume 1707
of Lecture Notes In Computer Science, pages 304–307.
Springer, September 2000.

[2] G. Chen and D. Kotz. A survey of context-aware mo-
bile computing research. Technical Report TR2000-
381, Department of Computer Science, Dartmouth
College, November 2000.

[3] H. Chen, T. Finin, and A. Joshi. An ontology
for context-aware pervasive computing environments.
Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review, 2003.

[4] M. Gogolla. Using OCL for defining precise, domain-
specific UML stereotypes. In A. Aurum and R. Jef-
fery, editors, Proc. 6th Australian Workshop on Re-
quirements Engineering (AWRE’2001), pages 51–60.
Centre for Advanced Software Engineering Research
(CAESER), University of New South Wales, Sydney,
Australia, 2001.

[5] K. Henricksen and J. Indulska. A software engineering
framework for context-aware pervasive computing. In
Proc. 2nd IEEE Conf. on Pervasive Computing and
Communications, pages 77–86. IEEE Computer Soci-
ety, Orlando, USA, 2004.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

9
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

[6] K. Henricksen, R. Wishart, T. McFadden, and J. In-
dulska. Extending context models for privacy in per-
vasive computing environments. In Context Modelling
and Reasoning Workshop at PerCom 05, pages 20–24.
IEEE Computer Society, Kauai Island, Hawaii, 2005.

[7] Object Management Group. UML 2.0 superstructure
specification, formal/05-07-04.

[8] Object Management Group. Meta object facility
(MOF) 2.0 core specification, ptc/2005-06-06.

[9] Object Management Group. OCL 2.0 specification,
ptc/2005-06-06.

[10] B. N. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In IEEE Workshop on Mo-
bile Computing Systems and Applications, Santa Cruz,
USA, 1994.

[11] Q. Z. Sheng and B. Benatallah. ContextUML: A UML-
based modeling language for model-driven develop-
ment of context-aware web services. In Proceedings

of the International Conference on Mobile Business
(ICMB’05), 2005.

[12] T. Strang, C. Linnhoff-Popien, and K. Frank. Cool:
A context ontology language to enable contextual in-
teroperability. In J.-B. Stefani, I. M. Demeure, and
D. Hagimont, editors, DAIS, volume 2893 of Lecture
Notes in Computer Science, pages 236–247. Springer,
2003.

[13] W3C. OWL Web Ontology Language.
[14] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung.

Ontology based context modeling and reasoning using
owl. In Context Modeling and Reasoning Workshop
at PerCom 04, pages 18–22. IEEE Computer Society,
2004.

[15] M. Weiser, R. Gold, and J. S. Brown. The origins
of ubiquitous computing research at parc in the late
1980s. IBM Systems Journal, 38(4), pages 693–696,
1999.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

10
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

