
PREPRINT - Computer Science - Research and Development manuscript No.
(will be inserted by the editor)

Troubleshooting Serverless Functions
A Combined Monitoring and Debugging Approach

Johannes Manner · Stefan Kolb · Guido Wirtz

Abstract Today, Serverless computing gathers pace and
attention in the cloud computing area. The abstraction
of operational tasks combined with the auto-scaling
property are convincing reasons to adapt this new cloud
paradigm. Building applications in a Serverless style via
cloud functions is challenging due to the fine-grained
architecture and the tighter coupling to back end ser-
vices. Increased complexity, loss of control over software
layers and the large number of participating functions
and back end services complicate the task of finding the
cause of a faulty execution. A tedious but widespread
strategy is the manual analysis of log data.

In this paper, we present a semi-automated trou-
bleshooting process to improve fault detection and reso-
lution for Serverless functions. Log data is the vehicle
to enable a posteriori analysis. The process steps of our
concept enhance the log quality, detect failed executions
automatically, and generate test skeletons based on the
information provided in the log data. Ultimately, this
leads to an increased test coverage, a better regression
testing and more robust functions. Developers can trig-
ger this process asynchronously and work with their
accustomed tools. We also present a prototype SeMoDe
to validate our approach for Serverless functions imple-
mented in Java and deployed to AWS Lambda.

Keywords Serverless Functions · FaaS · AWS Lambda ·
Monitoring · Debugging · Testing

Johannes Manner
E-mail: johannes.manner@uni-bamberg.de

Stefan Kolb
E-mail: stefan.kolb@uni-bamberg.de

Guido Wirtz
E-mail: guido.wirtz@uni-bamberg.de

Distributed Systems Group, University Bamberg, An der Weberei 5,
96047 Bamberg, Germany

1 Introduction

Serverless is quite a new computing paradigm and star-
ted its rise in 2012 [1]. Nowadays, some argue [2] that
Serverless is the latest option in cloud computing and
Function as a Service (FaaS) is the fourth and latest ser-
vice model in this area [3], besides the established ser-
vice models Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS).

To date, there is no clear definition of Serverless and
some authors [4,5] argue that servers are also trans-
parent in other cloud paradigms such as PaaS [6] not
solely FaaS. However, when talking about Serverless,
the majority of authors implicitly addresses FaaS. In the
following, we also use FaaS and its ecosystem equivalent
to Serverless. FaaS [7] is considered as an architectural
paradigm, where stateless functions are deployed to a
FaaS platform, which abstracts all operational tasks and
removes the burden of writing operational logic from
FaaS users. The hype is explicable, as FaaS providers ex-
ercise more control over the software stack [8], which fa-
cilitates auto-scaling of short-lived and context-unaware
cloud functions. Functions are executed in response to
events. A single event triggers the FaaS platform to exe-
cute a function on-demand. Therefore, it either starts a
new instance of the function or reuses an existing one. If
no demand is present for some time, the FaaS platform
scales the function to zero and terminates all instances
to avoid idling. The auto-scaling property is the basis for
a calculation model where users only pay when function
instances are running. This granular billing has posi-
tive effects on costs of FaaS architectures compared to
IaaS and PaaS solutions [9]. Also the execution time
of compute-intensive workloads profits from the paral-
lelism, which is provided by the FaaS platform. As JONAS

ET AL. [10] pointed out, developers are more familiar
with writing clean and performant single-threaded code,

2 J. Manner, S. Kolb, G. Wirtz

but lack experience with multi-threading and suitable
synchronization of shared memory.

In contrast, the benefits of fine-grained, cohesive
functions lead to a complex application architecture,
as the overall number of components rises. As a con-
sequence, the likelihood of failures and logical bugs
increases, because functions are also part of different
applications. Troubleshooting these erroneous functions
is time-consuming and tedious. Large log files and log
drains, which collect data from different functions, often
hide the cause of an error. Finding all mandatory pa-
rameters is challenging and some are often missing. In
this case, a reproduction of the input and context is not
possible and impedes troubleshooting of the function.
Therefore, contribution of this paper is an approach for:

• Semi-automation to troubleshoot cloud functions
consistently via appropriate log messages

• Continuous improvement of function quality by en-
hancement of test cases in quality and quantity

Our agenda is as follows: In Section 2, we present ex-
isting literature about monitoring cloud applications in
general with an emphasis on logging. Based on these in-
sights, we present our troubleshooting concept for cloud
functions in Section 3 and our prototype in Section 4.
Future work in Section 5 concludes this paper.

2 Related Work

Researchers [4,11] noted that a lack of tooling is present
due to the early stage of FaaS. Monitoring, logging, and
debugging cloud functions are the foundations of the
presented concept, but have not been directly investi-
gated for FaaS according to our knowledge.

SPRING [12,13] defines seven layers for monitoring
cloud computing. Facility, network, hardware and OS
layer are completely monitored by FaaS providers. Layer
five middleware and layer six application, which is the
collections of cloud functions, are partly provider and
partly user monitored. The middleware contains the
monitoring and logging service, which stores the log
data in log groups per cloud function. This high-level
monitoring approach is the basis for several activities
like Accounting and Billing, Fault Management and Perfor-
mance Management [14]. All high-level activities include
a provider and a consumer perspective. Users are the
last layer and not further investigated.

System logs are often written as plain text messages
without a defined data schema and enriched with fur-
ther environment parameters dependent on the imple-
mentation of the logging service. Additionally, every
developer chooses an individually defined level of detail

to provide him and other developers with sufficient in-
formation to resolve errors or logical bugs a posteriori.
Tools like LogEnhancer [15] try to mitigate inconsisten-
cies by enhancing existing log statements to achieve a
better information quality but do not ensure that all in-
put and context parameters are logged. The correctness
of event generation based on system log analysis [16] is
not sufficient without appropriate log messages.

Semi-automated test generation [17] reduces the de-
veloper effort significantly. It also improves incomplete
test suites and the overall test coverage. The human part
in this process is to decide, if generated tests are correct
or adjustments on the assert conditions are required.

3 Troubleshooting FaaS

3.1 Log-based Debugging

Log-based debugging is a double-edged sword, but es-
sential to analyze bugs a posteriori. Debugging the live
environment is not supported by most of the FaaS plat-
forms, because this reduces the FaaS provider’s control
over the platform. The obstacles of logging are the ad-
dition of non-functional source code, which results in
a modification of the function’s source code and a scal-
ing problem of manual analysis, if mature tooling for
screening and information extraction is missing. Gener-
ating log data consumes further resources. Firstly, the
execution time of functions rises according to the num-
ber and size of log statements. This results in higher
costs, because cloud functions’ execution time is billed
in millisecond chunks. Secondly, the logging service is
another back end service in the provider’s ecosystem.
It causes further costs to communicate with the FaaS
platform and to store log data in a cloud database. A
trade-off between information quality and additional
costs is important for the acceptance of the troubleshoot-
ing concept in general.

Advantages are a consistent execution history, since
log data is persisted in a database and preserved against
modification. The consistent order of events within the
log data enables an offline reconstruction of bugs, if all
required information is included in the log data. This
analysis decouples the debugging process from the FaaS
provider and enables a time-independent investigation.

3.2 Troubleshooting Process

The troubleshooting process, depicted in Figure 1, is di-
vided into three phases and assigns each process step an
area of responsibility. Some of these steps are explicitly
introduced to facilitate the concept.

Troubleshooting Serverless Functions 3

(Re-)Implement

Deploy MonitorOperate

Create Test SkeletonsAnalyse Log Data

Offline (Developer’s machine)

Online (FaaS platform)

Operation

InstrumentDevelopment

Troubleshooting Find Cause
of ErrorAlert

* Automated performed

~ Manually performed

~ *~

*~

*~

~* *

* *

SeMoDe support

Fig. 1: Section of Cloud Function Life Cycle with Troubleshooting Elements

3.2.1 Development

The development phase consists of implementation and
instrumentation of the cloud function. To enable an
easier portability between providers, the suggestion in
the development phase is, to separate all platform logic
from the business logic. To achieve a high test cover-
age and establish a test suite for regression testing, the
recommendation is to write several tests for each cloud
function to get quick feedback on the functional cor-
rectness during development. Cloud functions are black
boxes and executed in an isolated environment. Based
on these characteristics, we argue that logging the in-
put, context and output of cloud functions is sufficient
to reproduce bugs a posteriori. The instrumentation of
cloud functions to log these parameters is an essential
element in the overall troubleshooting process. This is
done by adding appropriate logging statements inside
the code to establish a custom data schema for instru-
mentation messages. A more generic solution without
modifications to the business code is the use of intercep-
tors or annotations, if supported by the programming
language. Cloud functions are stateless and therefore
shared state is not a problem at all. Access to shared
services like a cloud database are not considered in this
instrumentation approach. The parameters are logged
in a standardized, machine-readable format like JSON.
After instrumenting the cloud function, another test cy-
cle ensures the correctness of the instrumentation code
itself and tests the functional correctness as well to ex-
clude side effects.

3.2.2 Operation

Deploying a single cloud function is straightforward. A
FaaS user bundles the source code and all dependencies
in an archive and uploads this archive. Deployment and
operation is completely managed by the FaaS provider.
Monitoring activities support FaaS providers to ensure
a constant quality of service by monitoring all layers
of the hardware and software stack. FaaS users are in-
formed by metrics about the liveliness of their cloud
functions. Performance Management is essential to en-

sure a constant quality of service. Experiments on mul-
tiple VMs [18] showed a variation in execution time
and performance. Due to different technical implemen-
tations of FaaS platforms and the fine-grained nature
of cloud functions, a monitoring service needs a mecha-
nism for specifying a corridor for execution times, w.r.t.
the average time needed for executing the function, and
a deviation rate. Thereby a custom implementation of
the monitoring service, which polls the logs and anal-
yses them, or an integrated backend service, which is
present in rudimentary form in all mature FaaS ecosys-
tems, is used to monitor the cloud functions. Based
on these settings, the monitoring service identifies ex-
ecutions, where cloud functions exceed or deceed the
corridor. The metadata of these executions is passed to
a troubleshooting endpoint, like an email account or an-
other cloud function, where a developer starts the trou-
bleshooting process manually or the metadata serves as
a new event triggering automated test generation. Fault
Management is one of the most difficult challenges in
cloud computing [18]. After detecting an error, required
actions send notifications to predefined endpoints and
visualize the errors in form of a dashboard. An assess-
ment of the error and its context information support
developers to determine if the error is related to a cloud
function and must be resolved or if the error is FaaS
platform-specific and the provider must be informed.

3.2.3 Troubleshooting

The notifications, which are sent by the monitoring ser-
vices are alerts on the FaaS users side. Therefore, alerts
are the interface between FaaS user and provider and
a trigger for the developer to start the troubleshooting
process manually or define an event driven endpoint,
which automatically analyses system logs and creates
test cases. The first step in analyzing the log data is to
process consistent log events, which represent single
executions, because the messages in most of the log-
ging services are only plain text and not grouped yet.
Grouping these plain text messages can be achieved by
the order of the plain text messages within the logging
service or via a request identifier, which is a metadata

4 J. Manner, S. Kolb, G. Wirtz

field included in every log message. The mechanism to
correctly identify different function executions is thus
logging service specific. Individual helper implementa-
tions are needed to extract the events properly. The
next step in the troubleshooting process is to filter these
log events by a condition, e.g., for Java the most suit-
able condition is ‘Exception’ to retrieve all log events
of failed executions. False negatives, where the condi-
tion does not cover all erroneous executions, are not
a problem, if the error handling within the cloud func-
tion’s code propagates all errors to the logging service.
Also logical bugs are addressable with this filter con-
dition. Logging failed calls to third party services, like
databases, enables an indirect investigation of the cir-
cumstances, which led to the failures. Finally to tackle
all these scenarios, the parameters input, context, out-
put, which were instrumented during development, are
extracted and prepared for the creation of test skeletons.
A template approach is chosen, where placeholders are
replaced with the extracted data from the step before.
Naturally, different templates are needed for each pro-
gramming language. The last step is the error resolution,
where a developer takes the generated tests, evaluates
the input and updates the assert conditions, which are
left blank during test skeleton creation. This is the case,
because computing the semantically correct condition
out of the input data is not feasible. This step includes
local debugging to inspect the source code in detail
with the parameters that led to a failed execution. If an
error is function-related, the developer returns to the
implementation phase, resolves the error and starts the
process anew. Some steps, like the instrumentation, are
optional in the second iteration and can be skipped.

3.3 Assessment

The presented concept decouples the debugging aspect
from the FaaS platform. This enables an asynchronous
analysis and a time-independent investigation of bugs.
This has advantages for both parties. A provider grants
no rights to underlying software layers, which would
soften the abstraction of operational tasks. A developer
has no timely limitation for debugging and can work
with familiar, mature tooling on his own machine. The
semi-automated process solves the tedious searching
for all parameters to reproduce bugs and to start trou-
bleshooting promptly. Due to the test generation and the
integration of these tests in the test suite, the robustness
of the cloud function improves continuously and the in-
creasing number of test cases supports regression testing
to be compatible to prior versions of the cloud function.
The test case enhancement, as the second contribution
of this paper, results from the additional number of test

cases in the test suite and the recognition of edge cases
during production. This is necessary, because a cloud
function can be part of different applications and must
guarantee a stable behavior over time. Logging all rel-
evant parameters of a cloud function is an additional
effort in execution time. Furthermore, a logging service
with a cloud database is needed to store the log data.
These two aspects directly influence the cost structure,
which is an inherent drawback of the concept. Gener-
ating test skeletons from failed executions leads to the
problem of semantic duplicates. Imagine a situation,
where 100 events are executed by 20 instances of the
same cloud function. All executions failed because of
the same error. Assumed that there are no equal events,
100 test files are generated, but only a single test file is
needed to tackle the problem. Resolving this problem
automatically by filtering the error’s cause and location
is problematic, because some parameter settings in this
set of semantic test duplicates cause the same error
due to distinct reasons. Another limitation of the pre-
sented concept is the emulation of the FaaS platform
and the settings of the instances, which execute the
event-triggered cloud functions. Dev-prod parity is hard
to achieve, as a local environment can simulate the FaaS
platform, but does not obtain a completely equivalent
reconstruction. A further restriction is the programming
language and ecosystem dependency, because test tem-
plates are different for each programming language and
analyzing log data is dependent on the used logging
service. Furthermore, the instrumentation and analy-
sis is closely related to each other. Each programming
language needs an utility mechanism to define instru-
mentation statements in an appropriate data format
between instrumentation and analysis.

4 Prototype SeMoDe

SeMoDe1 is our prototype to instrument cloud functions
and generate tests based on log data from faulty cloud
function executions. It includes utility methods, shown
in Listing 1, for instrumenting AWS Lambda functions to
log input and output, as described in Section 3.2.1. Both
instrumentFunction method calls are hard coded as
first and last statement within the handle method in the
actual prototyping phase.

SeMoDe requires five parameters to execute the test
generation functionality. The AWS region, where the
cloud function is deployed, the log group name of the
AWS Cloud Watch logging service, a search string to
filter log events and the start and end time for retrieving
log streams. Listing 2 shows SeMoDe’s Java template for

1 https://github.com/johannes-manner/SeMoDe

https://github.com/johannes-manner/SeMoDe

Troubleshooting Serverless Functions 5

Listing 1: Instrumentation Methods for AWS Lambda
1 public static void instrumentFunction(String
2 handlerClass, String handlerMethod, String
3 inputClass, Object input, String outputClass);
4

5 public static void instrumentFunction(Object output);

test generation. All terms in capital letters are placehold-
ers for the logged parameters of the instrumentation
phase. To support developers with additional context
information, the log data from the logging service is
added as a comment within the test file.

Listing 2: Template File for Test Generation
1 /** FUNCTIONLOG */
2 public class FILENAME {
3 private static INPUTCLASS input;
4

5 @BeforeClass
6 public static void createInput()
7 throws IOException {
8 String jsonInput = INPUTJSON;
9 input = new ObjectMapper()

10 .readValue(jsonInput, INPUTCLASS.class);
11 }
12

13 @Test
14 public void testLambdaFunctionHandler() {
15 HANDLERCLASS handler = new HANDLERCLASS();
16 OUTPUTCLASS output =
17 handler.HANDLERMETHOD(input, null);
18

19 Assert.assertEquals(??, output);
20 }
21 }

The condition in line 19 needs a manual adaption,
because it is not possible to compute the semantically
correct output. Based on the input string and the context
information provided trough the log data, the developer
has to decide about the expected output, which is com-
pared with the output generated by the invocation of
the functional handle method.

The test file is an entry point for debugging and
serves as a basis for further test cases. A developer starts
the process with a syntactically correct condition in
line 19. He is then able to start debugging the function
to find the cause of the error and to resolve it. Finally,
he considers the output of the computation, checks this
output with his expectation and updates the expected
value in line 19 with the semantically correct output. At
last, he adds this generated and updated test to the test
suite.

5 Future Work

The next step is to investigate the performance draw-
back to convince practitioners to adapt this troubleshoot-
ing concept for cloud functions. Also, the increased time

consumption with different amounts of input data is on
our agenda to tackle the problem of runaway costs. A
study about mature logging services, their contingents,
conditions and throughput can assist FaaS users to se-
lect an appropriate logging service. Investigating the
semantic test duplicate problem is another task to filter
duplicates automatically. Adapting the assert condition
within the generated test skeletons is the most difficult
part, which needs further considerations, what to test
beyond the input-output relation of a function to get a
more stable test set over time, e.g., testing the schema
of input and output to support backwards compatibil-
ity. We also aim at extending the prototype to support
further programming languages and FaaS platforms.

To conclude, SeMoDe is a first step towards a unified
tool for troubleshooting cloud functions.

References

1. K. Fromm. Why The Future Of Software And Apps Is Server-
less, 2012. https://readwrite.com/2012/10/15/why-the-
future-of-software-and-apps-is-serverless/. Last ac-
cessed 2018-01-31.

2. N. Savage. Going Serverless. Commun. ACM, 61(2), 2018.
3. P. Mell and T. Grance. The NIST definition of cloud comput-

ing. 2011.
4. I. Baldini et al. Serverless Computing: Current Trends and Open

Problems. 2017.
5. P. Sbarski. Serverless Architectures on Aws: With Examples

Using Aws Lambda. Manning Publications, 2017.
6. S. Kolb and G. Wirtz. Towards Application Portability in

Platform as a Service. In Proc. SOSE, 2014.
7. E. van Eyk et al. The SPEC Cloud Group’s Research Vision on

FaaS and Serverless Architectures. In Proc. WoSC, 2017.
8. S. Hendrickson et al. Serverless Computation with open-

Lambda. In Proc. HotCloud, 2016.
9. M. Villamizar et al. Infrastructure Cost Comparison of Run-

ning Web Applications in the Cloud Using AWS Lambda and
Monolithic and Microservice Architectures. In Proc. CCGrid,
2016.

10. E. Jonas et al. Occupy the Cloud: Distributed Computing for
the 99%. In Proc. SoCC, 2017.

11. M. Roberts and J. Chapin. What is Serverless? O’Reilly Media,
Inc. CA, US, 2017.

12. J. Spring. Monitoring Cloud Computing by Layer, Part 1. IEEE
Security Privacy, 9(2), 2011.

13. J. Spring. Monitoring Cloud Computing by Layer, Part 2. IEEE
Security Privacy, 9(3), 2011.

14. G. Aceto et al. Cloud monitoring: Definitions, issues and
future directions. In Proc. CLOUDNET, 2012.

15. D. Yuan et al. Improving Software Diagnosability via Log
Enhancement. In Proc. ASPLOS, 2011.

16. M. Kobayashi et al. Discovering Cloud Operation History
through Log Analysis. In Proc. AnNet, 2017.

17. M. Kellogg. Combining Bug Detection and Test Case Genera-
tion. In Proc. SIGSOFT, 2016.

18. M. Armbrust et al. A View of Cloud Computing. Communica-
tions of the ACM, 53(4), 2010.

https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/
https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/

	Introduction
	Related Work
	Troubleshooting FaaS
	Prototype SeMoDe
	Future Work

